Microtubule-associated protein 2 within axons of spinal motor neurons: associations with microtubules and neurofilaments in normal and beta,beta'-iminodipropionitrile-treated axons
نویسندگان
چکیده
We have examined the distribution of microtubule-associated protein 2 (MAP2) in the lumbar segment of spinal cord, ventral and dorsal roots, and dorsal root ganglia of control and beta,beta'-iminodipropionitrile-treated rats. The peroxidase-antiperoxidase technique was used for light and electron microscopic immunohistochemical studies with two monoclonal antibodies directed against different epitopes of Chinese hamster brain MAP2, designated AP9 and AP13. MAP2 immunoreactivity was present in axons of spinal motor neurons, but was not detected in axons of white matter tracts of spinal cord and in the majority of axons of the dorsal root. A gradient of staining intensity among dendrites, cell bodies, and axons of spinal motor neurons was present, with dendrites staining most intensely and axons the least. While dendrites and cell bodies of all neurons in the spinal cord were intensely positive, neurons of the dorsal root ganglia were variably stained. The axons of labeled dorsal root ganglion cells were intensely labeled up to their bifurcation; beyond this point, while only occasional central processes in dorsal roots were weakly stained, the majority of peripheral processes in spinal nerves were positive. beta,beta'-Iminodipropionitrile produced segregation of microtubules and membranous organelles from neurofilaments in the peripheral nervous system portion and accumulation of neurofilaments in the central nervous system portion of spinal motor axons. While both anti-MAP2 hybridoma antibodies co-localized with microtubules in the central nervous system portion, only one co-localized with microtubules in the peripheral nervous system portion of spinal motor axons, while the other antibody co-localized with neurofilaments and did not stain the central region of the axon which contained microtubules. These findings suggest that (a) MAP2 is present in axons of spinal motor neurons, albeit in a lower concentration or in a different form than is present in dendrites, and (b) the MAP2 in axons interacts with both microtubules and neurofilaments.
منابع مشابه
Microtubule-associated Protein 2 within Axons of Spinal Motor Neurons: Associations Microtubules and Neurofilaments in Normal and/3,/ '-Iminodipropionitrile-treated Axons
We have examined the distribution of microtubute-associated protein 2 (MAP2) in the lumbar segment of spinal cord, ventral and dorsal roots, and dorsal root ganglia of control and/3,/T-iminodipropionitrile~treated rats. The peroxidase-antiperoxidase technique was used for light and electron microscopic immunohistochemical studies with two monoclonal antibodies directed against different epitope...
متن کاملCytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system
Axons from rats treated with the neurotoxic agent beta,beta'-iminodipropionitrile (IDPN) were examined by quick-freeze, deep-etch electron microscopy. Microtubules formed bundles in the central region of the axons, whereas neurofilaments were segregated to the periphery. Most membrane-bounded organelles, presumably including those involved in rapid axonal transport, were associated with the mic...
متن کاملDisruption of the NF-H Gene Increases Axonal Microtubule Content and Velocity of Neurofilament Transport: Relief of Axonopathy Resulting from the Toxin β,β′-Iminodipropionitrile
To investigate the role of the neurofilament heavy (NF-H) subunit in neuronal function, we generated mice bearing a targeted disruption of the gene coding for the NF-H subunit. Surprisingly, the lack of NF-H subunits had little effect on axonal calibers and electron microscopy revealed no significant changes in the number and packing density of neurofilaments made up of only the neurofilament l...
متن کاملReorganization of axoplasmic organelles following beta, beta'- iminodipropionitrile administration
beta, beta'-Iminodipropionitrile (IDPN), a synthetic compound that selectively impairs slow axonal transport, produced a rearrangement of the axonal cytoskeleton, smooth endoplasmic reticulum, and mitochondria. Immunoperoxidase staining using an antiserum to the 68,000-dalton neurofilament subunit demonstrated a displacement of neurofilaments toward the periphery of the axons of IDPN-treated ra...
متن کاملRedistribution of proteins of fast axonal transport following administration of beta,beta'-iminodipropionitrile: a quantitative autoradiographic study
Beta,beta'-iminodipropionitrile (IDPN) produces a rearrangement of axoplasmic organelles with displacement of microtubules, smooth endoplasmic reticulum, and mitochondria toward the center and of neurofilaments toward the periphery of the axon, whereas the rate of the fast component of axonal transport is unchanged. Separation of microtubules and neurofilaments makes the IDPN axons an excellent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 100 شماره
صفحات -
تاریخ انتشار 1985